

Virtual Texturing in Software and Hardware
Monday, 6 August, 2:00pm - 3:30pm

AMDZ1 {3

Juraj Obert

Advanced Micro Devices

J.M.P. van Waveren
id Software

Graham Sellers
Advanced Micro Devices

=
SIGGRAPH20124/_4§

GGRAPH 2012»()2

ol 4! ~
R S i S S SRR

= [ntroduction to Virtual Texturing

= Software Virtual Textures (Megatexture) in RAGE
= Partially Resident Textures (PRTS)

= OpenGL sparse texture extension

= Demo (RAGE running PRTS)

= Conclusion & Discussion

Juraj Obert
Advanced Micro Devices

GGRAPH 2012»()2

ol 4! ~
R S i S S SRR

= Non-virtual textures

= One (or multiple) physical textures per game object

= Game needs to bind them all before a draw call

SIGGRAPH 2012»&

= Virtual textures
= One massive virtual texture that contains data for the entire world
= Only one texture needs to be bound at any given time

= Problem

= The texture cannot possibly fit into video memory

= E.g., some RAGE virtual textures are 128K x 128K texels (64 GB)

g S A dat e X

IGGRAPH2012)&

= Paging
= Making only a part of the virtual texture resident in GPU memory

= Tile (page) granularity

= Working set — the set of texture tiles resident in GPU memory
= Represented as another physical texture in GPU memory
= QOrders of magnitude smaller than the virtual texture (needs to fit in GPU memory)

= Application decides based on FOV, map location, view direction, etc.

SIGGRAPH2012 s/"

lexturing

= Paging

= Virtual texture subdivided into tiles (pages)

Virtual texture

Images courtesy of Sean Barrett

SIGGRAPH2012 »3’

 Texturing

= Paging

= Tiles uploaded into the physical texture

Virtual texture Physical texture

Images courtesy of Sean Barrett

SIGGRAPH2012 sg

= Virtual texture coordinates are mapped to physical texture coordinates through

a page table texture

Virtual texture Physical texture

Images courtesy of Sean Barrett 10

SVT texture lookup

uniform sampler2D samplerPageTable;
uniform sampler2D samplerPhysTexture;

in vecd virtUV;
out vecd color;

vec2 getPhysUV (vecd pte);

void main ()

{

vecd pte = texture (samplerPageTable,

vec?2 physUV = getPhysUV (pte) ;

color = texture(samplerPhysTexture,

virtUv.xy);

physUV.xy) ;

// page table texture
// physical texture

// virtual texture coordinates
// output color

// translation function

SIGGRAPH 2012;& |

aal

GGRAPH2012;Z()

e O S EERRSEAE

m Software virtual textures

= Powerful tool to handle massive datasets

= Simple in theory, but hard to implement efficiently

12

irtual Textures in RAGE

Software V

J.M.P. van Waveren

id Software

= |Motivation

= Address Translation

= Texture Filtering

SIGGRAPH2012 /’Q

SIGGRAPH2012 »30

Desire for unique detail at a distance and up close.

Texture mapping efficiently adds surface detail to geometric primitives.

Tiling, blending and decals are forms of manual texture compression.

Tiling looks bad at a distance.
Bilinear magnification looks bad up close.

Hunger for truly unique detail results in huge texture data set.

Massive amount of texture data and only so much physical memory.
GPU compression formats designed for rendering performance.
Texture data can be stored highly compressed on secondary storage.
Lossy compression is perfectly fine for many use cases.

Only small subset of texture data needed at any time.

Temporarily fall back to slightly blurrier texture data without stalling

execution (trade quality vs. performance).

SIGGRAPH2012§& :

/sical lexture Data

= Massive amount of texture data in a virtual address space.

= Possibly highly compressed in non-renderable format.
= Smaller resident subset in a physical address space.

= Possibly compressed in a GPU renderable format.

= Translate virtual texture addresses to physical addresses.

= Various address translation schemes can be applied.

Per Model.

= L OD system where each geometry LOD has its own texture LOD.
= Make a different texture resident for each LOD.

Per Vertex.
= Modify the geometry texture coordinates at run-time.

Per Fragment.
Translate the texture address per fragment (or per texture lookup).

Unwrap all UV islands onto one very large texture.

Divide this large texture into pages that are made resident as needed.
Virtual texture pages map to physical texture pages.

Use address translation to map virtual addresses to physical ones.

Per Point Sample.
= Filtering in software is rather expensive. Need hardware support!

SIGGRAPH 2012;& :

= Back in the day required hardware support.

= Can easily be implemented on programmable graphics hardware.

= Texture sub-square resident around single focus point on texture.

= Single region of interest significantly simplifies the address translation.
= No page table needed!

= Limited to environments with natural spatial correlation between

texture data and geometry.

21

SIGGRAPH 2012;&

Not all environments have a natural correlation between the geometry

and texture data.
Need more flexible texture management and address translation.

Need to map arbitrary virtual texture pages to physical memory.

>
SIGGRAPH20124(_4§

‘v w ‘[|v; |_|\'-' i

%: L/ 4

SIGGRAPH20124(_4§

>
SIGGRAPH2012¢/_4

SIGGRAPH2012 b&

ation

!

lrans

Y
Ly

|

'~
| = W
11 S

Virtual Texture Pyramid with Sparse Page Residency

26

smempnzmz»f’

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

27

ati

L]

J

ress lrans

|
[o]
Al

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

28

CQuad-tree of Sparse Texture Pyramid

ati

L]

J

ress lrans

|
[o]
Al

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

29

CQuad-tree of Sparse Texture Pyramid

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

30

CQuad-tree of Sparse Texture Pyramid

"

SIGGRAPH2012 »a

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 3 1

"

SIGGRAPH2012 »a

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 3 2

"

SIGGRAPH2012 »a

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 33

"

SIGGRAPH2012 »a

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 34

SIGGRAPH2012 VZ‘

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 3 5

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

CQuad-tree of Sparse Texture Pyramid 3 6

SIGGRAPH2012 V;’

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

AN
physical = (virtual - A) x (C/D) +B

37

SIGGRAPH2012}

franslation

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

C/D

A scale

38

SIGGRAPH2012 sg

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

‘>~ scale=C/D
bias =B - A x scale

39

SIGGRAPH2012\3Q

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency ﬁx

“>~ scale=C/D
bias = B - A x scale
physical = virtual x scale + bias

40

SIGGRAPH2012 Qa

Scale is ratio between virtual mip level size and physical texture size.
The bias is offset to physical page minus scaled offset to virtual page.
One scale value if virtual and physical textures are square.

Two scale values if using non-square virtual or physical texture.

Two bias values to map virtual pages to arbitrary physical pages.

41

IGGRAPH 2012»()2

S SR T AT

= Quad-tree

= Minimal memory footprint.
= Quad-tree updates are cheap.
= Dependent lookup for each level accessed.

= Hash table

= Small memory footprint.
= Hash table updates are relatively cheap.
= Need multiple lookups when the desired page is not resident.

= Page table texture

= Allows texture hardware to be used to directly find the scale & bias for a virtual address.

= Larger memory footprint because it effectively stores the full quad-tree whether pages are resident or not.
= Texels for pages that are not resident point to the nearest coarser resident page.

= May need to update large squares of texels when a page is mapped or unmapped.

42

SIGGRAPH 2012;&

= Store complete quad-tree as a mip-mapped texture.
= Store full FP32x4 with scale and bias.
= Encode scale and bias into UINT16x4.
= Use a page table plus mapping texture to store the scale and bias.
= Store 8.8 page table texture with 1 texel per virtual page.
= Store FP32x4 mapping texture with 1 texel per physical page.
= Calculate the scale and bias in a fragment program.

Store physical page coordinates and base-two logarithm of mip-level width in pages.
8:8:8:8=X:8+Y:8+W:16

565=X5+W:.6+Y5

Pre DX10 hardware has different conversions from 8-bits to FP32.

SIGGRAPH 2012;&

Bilinear filtering without borders

= Adjacent virtual pages are not necessarily adjacent in the physical texture.
= Clamp at border causes objectionable seams at mip level transitions.

Bilinear filtering with borders
= Need at least a 1 texel border.

Trilinear filtering with borders.

= Mip mapped physical texture.
= Two address translations.

Anisotropic filtering with borders.

= A-texel border (max aniso = 4)
= Explicit derivatives + TXD (texgrad)
= Using implicit derivatives work surprisingly well!
44

“IGGRAPH 2012;&

Page table is point sampled.

Page table lookup unaware of anisotropic lookup that follows.
May end up with a page that is too coarse.

Not enough texture detail for the anisotropic texture filter.

Bias the page table lookup based on the anisotropic footprint,

float minAnisoBias = -2; /Il -1log2(maxAniso =4)

float2 dx = ddx(virtualTexCoords.xy);
float2 dy = ddy(virtualTexCoords.xy);

float px = dot(dx, dx);
float py = dot(dy, dy);

float maxLod = 0.5 *log2(max(px, py)); //log2(sqrt()) = 0.5*log2()
float minLod = 0.5 * log2(min(px, py));

float anisoBias = max(minLod - maxLod, minAnisoBias);

= Memory cost

= Page table textures can take up a fair amount of memory.

= Performance cost

= Dependent texture lookup(s) for address translation.

= Texture filtering.

= Various trade-offs.

= High quality filtering is still costly.

Juraj Obert
Advanced Micro Devices

SIGGRAPH2012}

= Memory requirements determined by the number of
resident tiles, not texture dimensions

RGBAS, 1024x1024, 64 tiles

Non-PRT

PRT

Memory

4096 kB

1536 kB

N

49

= PRTs rely on 3 core components:

= Hardware virtual memory subsystem (HW VM)

= Shader core feedback

= SW driver stack

= Hardware virtual memory

= |atest generation GPUs use virtual addresses

= Page table in the on-board GPU memory

= Address translation entirely in hardware

e

£ SIGGRAPH2012
tures — HW VM "4

texture(sampler, uv); .
v l Tdata virtual | physical
Texture Unit address| address
virtual address A data i
Memory
Controller
physical
address | data

Physical Memory Page Table

52

- HW VM

= Texture Unit
= UV to virtual address translation
= Hardware filtering
= Caching

= Memory Controller
= Virtual to physical address translation

= Page table
= Caching

SIGGRAPH 2012;& |

= SVT texture fetch

uniform sampler2D samplerPageTable; // page table texture
uniform sampler2D samplerPhysTexture; // physical texture

in vecd4 virtUV; // virtual texture coordinates
out vec4 color; // output color

vec2 getPhysUV (vecd pte); // translation function
void main ()

{
vecd pte = texture(samplerPageTable, virtUV.xy);

res —

HW VM

texture(sampler, uv);

virtuv l

TPT

Texture Unit

virtual address |

data

Memory
Controller

E .
virtual

address

SIGGRAPH2012sQ/’Q

physical
address

data

physical
address

Physical Memory

—
-

Page Table

55

SIGGRAPH 2012;& |

= SVT texture fetch

uniform sampler2D samplerPageTable; // page table texture
uniform sampler2D samplerPhysTexture; // physical texture

in vecd4 virtUV; // virtual texture coordinates
out vec4 color; // output color

vec2 getPhysUV (vecd pte); // translation function
void main ()
{

vecd pte = texture(samplerPageTable, virtUV.xy);

vec?2 physUV = getPhysUV (pte) ;

SIGGRAPH 2012;& |

= SVT texture fetch

uniform sampler2D samplerPageTable; // page table texture
uniform sampler2D samplerPhysTexture; // physical texture

in vecd4 virtUV; // virtual texture coordinates
out vec4 color; // output color

vec2 getPhysUV (vecd pte); // translation function
void main ()
{

vecd pte = texture(samplerPageTable, virtUV.xy);

vec?2 physUV = getPhysUV (pte) ;

color = texture (samplerPhysTexture, physUV.xy);

res —

HW VM

texture(sampler, uv);

SIGGRAPH2012} 34

physUVl T color virtual
Texture Unit address
virtual address | data
Memory
Controller
physical
address | data

physical
address

Physical Memory

—
-

Page Table

58

SIGGRAPH2012 Q&

= PRT texture fetch

uniform sampler2D samplerPRT; // partially-resident texture

in vecd virtUV;

// virtual texture coordinates
out vecd color;

// output color

void main ()

{

color = vecd4(0.0);

texture (samplerPRT, virtUV.xy, color);

e

e SIGGRAPH2012
tures — HW VM 4

texture(sampler, uv); .
VlftUVl T color virtual | physical
S address| address
virtual address | data i
Memory
Controller
physical
address | data

Physical Memory Page Table

60

SIGGRAPH2012 »Z‘

hader

= Virtual address space

= Segmented into 64 kB tiles (pages) _ X | X

X | X | X | X | X

= Each tile can be either mapped (resident) x | x
or unmapped (non-resident)

X X X X

= Mapping/unmapping controller by the
application/driver

61

SIGGRAPH2012 sg

texture(sampler, uv); virtual
address
uv l

T nack

Texture Unit

virtual address A NACK NACK i
Memory

Controller

Physical Memory Page Table

62

= NACKSs in shaders

volid main ()

{

vecd outColor = vecd4 (1.0, 1.

int code = sparseTexture (sampler,

0, 1.

if (code == 0)
{
// data resident
gl FragColor = vec4 (outColor.rgb, 1.
}
else
{
// NACK
gl FragColor = vec4(1.0, 0.0, 0.0, 1.

0, 1.0);

texCoordvVert.xy,

0)-

0);

outColor);

SIGGRAPH2012} 30

= What can be sparse?
= Any tile-aligned sub-rectangle of a texture mipmap level

e

64

smempuzmz;&

= \What can be sparse?

= An entire mipmap level

65

SIGGRAPH2012 V;‘

= \What can be sparse?

= Any part of any cubemap face (anyone ever used the bottom
cubemap face for anything useful?)

66

' SIGGRAPH 2012»&

Nant Tavt ac S hadas
dent Textures — Shader

= \What can be sparse?

= And any combination of everything just mentioned

= One limitation

= Everything needs to be tile-aligned

' SIGGRAPH 2012»&

1t Textures — Driver

= Driver SW stack functionality
= Create/destroy partially resident resources
= Map/unmap individual tiles

= Back virtual allocations by physical memory

dent lextures — Driver

= Backing storage

= A set of physical allocations managed by the driver

The goal is to find balance between the number of
resources and unused physical memory

Each application has different requirements

SIGGRAPH2012 ./’9

St

X X X X X X X 24 25 X

X X X X X X X 26 27 X

C h u n k 2 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chunk 2

X X X X X X 24 25 X
X X X X X X 26 27 X
X X X X X X X X X

SIGGRAPH2012 ./’9

= Summary

Address translation Shader code

HW page table

IGGRAPH2012 92(3 |

= Summary
Address translation Shader code HW page table
Filtering HW + shader code HW only

73

SIGGRAPH2012 VZ‘

= Summary
SVTs PRTs
Address translation Shader code HW page table
Filtering HW + shader code HW only
of texture fetches 2, dependent 1

74

SIGGRAPH2012 ‘3‘

= Summary
SVTs PRTs
Address translation Shader code HW page table
Filtering HW + shader code HW only
of texture fetches 2, dependent 1
Supported formats The ones implemented | All supported by HW

75

SIGGRAPH2012 \/’A’

= Summary
SVTs PRTs
Address translation Shader code HW page table
Filtering HW + shader code HW only
of texture fetches 2, dependent 1
Supported formats The ones implemented | All supported by HW
Supported texture types | The ones implemented | All supported by HW

76

Graham Sellers
Advanced Micro Devices

* GL_AMD_sparse_texture

* Major design goals:

— Minimally invasive to the OpenGL API
— Easy to retrofit into existing application
— Plays well with non-sparse textures

— Easy fallback path

IGGRAPH 2012»(22!

* Most of the same code will work In the
absence of the extension
* Two parts to the extension

— Update to the API — 1 function, a hand full of
tokens

— Update to the shading language

| >
: e SIGGRAPH2012y¢ 4
Example U xisting OpenGL API =

* Use of iImmutable texture storage

GLuint tex;

glGenTextures(1, &tex);

glBindTexture(GL_TEXTURE_2D, tex);

glTexStorage2D(GL_TEXTURE_2D, 10, GL_RGBAS,

glTexSublmage2D(GL_TEXTURE_2D, 0, 0, 0,
GL_RGBA, GL_UNSIGNED_BYTE, data)

* Existing OpenGL immutable storage API

— Declare storage, specify image data

| >
| O : SIGGRAPH20124_4)
Example g New Extension =

» Use of sparse texture storage

GLuint tex;

glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D, tex);
glTexStorageSparseAMD(GL_TEXTURE_2D, GL_RGBA,

, GL_TEXTURE_STORAGE_SPARSE_BIT_AMD);
giTexSublmage2D(GL_TEXTURE._ 2D, 0, 0, 0, ,
GL RGBA, GL_UNSIGNED_BYTE, data);

* glTexStorageSparseAMD is the one new
function in the extension

SIGGRAPH2012} a

idency With Existing £

Previous example used glTexSublmage2D
— Upload sub-region of the texture

— Physical pages allocated on demand by the
OpenGL driver

— Unused pages remain free

! ; >
, ; = IGGRAPH20124¢_4
Control Res 1cy With Existing API EC =

* Allocate disjoint chunks

glTexStorageSparseAMD(GL_TEXTURE_2D, GL_RGBA, ,
, GL_TEXTURE_STORAGE_SPARSE_BIT_AMD);
giTexSublmage2D(GL_TEXTURE. 2D,

GL_RGBA, GL_UNSIGNED_BYTE, datal);
glTexSublmage2D(GL_TEXTURE_2D,
GL_RGBA, GL_UNSIGNED_BYTE, data?);

— Enough storage for two 256x256 regions allocated

Existing API SIGGRAPH2012\3Q

* Pass NULL to glTexSubimage2D

glTexSublmage2D(GL_TEXTURE_2D, 0, 0, O,

GL_RGBA, GL_UNSIGNED_BYTE, NULL)

— Makes pages non-resident

— Driver returns physical pages to the pool

84

SIGGRAPH2012 b&

* Sparse Textures rely on VM subsystem

— Pages are 64 kilobytes in size on Southern Islands

— Size of a page in texels depends on texture format

BPP Texels BPP Tile Width Tile Height
128 4096 128 64 64
64 8192 BC2/3/5/6H/7 256 256
32 16384 64 128 64
16 32768 BC1/4 512 256
8 65636 32 128 128
16 256 128
8 256 256

85

>
SIGGRAPH20124(_4§

Getting Pa s from OpenGL

* Reuse existing API: glGetinternalFormativ

GLint page_size_x;

glGetinternalFormativ(GL_TEXTURE_2D, GL_RGBAS,
GL_VIRTUAL_PAGE_SIZE {X,Y,Z} AMD,
sizeof(GLint), &page_size {Xx,y,z});

— Given a target and format, returns the page size

It IS not necessary to create a texture to get
this iInformation

* Each LOD requires a
different number of pages

— T
——

— Each LOD requires fewer and 7 { =

fewer pages

— Eventually, one LOD does not
fill a page

— Now what?

>
SIGGRAPH20124(_4§

* Eventually, we make all LODs resident

— Use glGetinternalFormativ to retrieve the lowest
sparse level for a given target/format

GLint min_sparse_level;

glGetinternalFormativ(GL_TEXTURE_2D, GL_RGBA16F,
GL_MIN_SPARSE_LEVEL_AMD,
1, &min_sparse_level);

— All levels below this reside in the same page
and share residency

IGGRAPH2012 \&

* A per-texture low water mark is included
— Set this to lowest LOD that’s fully resident
— When this is hit, the shader is signaled
— Returned data is still valid

— Start streaming the next mip

* Exposed using the glTexParameter API

| SIGGRAPH2012»Z‘

1g the LOD Waterm

* Exposed using the glTexParameter API

glTexParameteri(GL_TEXTURE_2D, GL_MIN_WARNING_LOD_AMD, 4);

— Here, an LOD warning will be returned to the
shader if hardware attempts to access LOD 4 or
lower

* More on residency returns later...

90

& ‘

SIGGRAPH2012

Rendering to a Sparse Texture

* Render to a texture using an FBO

GLuint prt, fbo;

glGenTextures(1, &prt);
glBindTexture(GL_TEXTURE_2D, prt);
glTexStorageSparseAMD(GL_TEXTURE_2D, GL_RGBA, 1024, 1024,

1,1, GL_TEXTURE_STORAGE_SPARSE BIT_AMD);
glTexSublmage2D(GL_TEXTURE_2D, 0, 0, 0, 1024, 1024, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenFramebuffers(1, &bo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D, prt, 0);

— Writes to unmapped regions are silently dropped

| >
B o SIGGRAPH20124/_4
Sparse Texture =

* Read data to memory using existing APIs

— Call glGetTexIlmage to read entire content

glGetTeximage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);

— Bind to FBO, use glReadPixels or
glBlitFramebuffer

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D, prt,

0);
glReadPixels(0, 0, 1024, 1024, GL_RGBA, GL_UNSIGNED_ BYTE, data);

* Sparse textures have some restrictions:

— Dimensions of the base level must be integer
multiples of the page size

* This means... no sparse textures below this size
— No buffer textures or “TBOs”

— No depth or stencil textures, nor MSAA textures

* Virtual address space Is extremely large

— It will run out eventually, but it'll take a while
— It’s still possible to run out of physical memory
— glTexSublmage2D etc., may fail

— Draw calls may fail

IGGRAPH 2012;(22

* Physical memory is a limited resource
— Feel free to create a 4k x 4k x 4k volume
— Don't try to make it all resident at once!

* There are no sparse read-backs
— glGetTexIimage could read gigabytes of data

— This will fail

IGGRAPH 2012»(22! |

'es In Shaders
* Texture type in GLSL is the ‘sampler’

* Several types of samplers exist...

— sampler2D, sampler3D, samplerCUBE,
sampler2DArray, etc.

* We didn’t add any new sampler types

— Sparse and normal textures use the same types

>
g SIGGRAPH2012 4
es in Shaders =

* Read textures using ‘texture’

— Built-in function, with several overloads

gvec4 texture(gsamplerlD sampler, float P [, float bias]);
gvec4 texture(gsampler2D sampler, vec2 P [, float bias]);
gvec4 texture(gsampler2DArray sampler, vec3 P [, float bias]);
gvec4 textureLod(gsampler2D sampler, vec2 P, float lod);

gvec4 textureProj(gsampler2D sampler, vec4 P [, float bias]);
gvec4 textureOffset(gsampler2D sampler, vec2 P, ivec2 offset [, float bias]);
Il ... etc.

— We didn’t add any new overloads

R
-

* Adding new function overloads is difficult

— Need to return a status code and a texel

— Need user-specified defaults with conditional
move like functionality

— Optional parameters in existing overloads made
this very difficult

SIGGRAPH2012 ./’9

Extending G

e Added new built-in functions

— Return both a status code and texel data:

Int sparseTexture(gsampler2D sampler, vec2 P, inout gvec4 texel [, float bias]);

Int sparseTextureLod(gsampler2D sampler, vec2 P, float lod, inout gvec4 texel);
Il ... etc.

— Most existing texture functions have a
sparseTexture equivalent

— Non-sparse textures work with new functions

SIGGRAPH2012 \/’A’

* sparseTexture returns two pieces of data:

int sparseTexture(gsampler2D sampler, vec2 P, inout gvec4 texel [, float bias]);

/

— Texel data via inout parameter

— Residency status code

100

IGGRAPH2012 QZ!

LSL | sparse lexture

* Texel data returned in inout parameter

— If texel fetch fails, old data remains in variable

— Think of it as a CMQV type operation

* Return code is hardware-dependent

— More built-in functions for decoding status codes

=
ok cie : SIGGRAPH2012 4
Extendin L | sparseTexture =4

* No direct support for ‘default value’

— But this can be emulated easily:

vec4 texel = vec4(1.0, 0.0, 0.7, 1.0); // Default value

sparseTexture(s, texCoord, texel);

/I On success, texel contains texture data. On failure, it has the shader-supplied
// default value in it (pinkish magenta here).

SIGGRAPH2012 sg

* Original functions work on sparse textures

— Return value for unmapped regions undefined

— Useful when residency is predetermined

103

* Residency information returned to shader

vec4 texel = vec4(1.0, 0.0, 0.7, 1.0); // Default value
int code;

code = sparseTexture(s, texCoord, texel);

* Code is interpreted by additional functions

bool sparseTexelResident(int code);

bool sparseTexelMinLodWarning(int code);
int sparseTexelLodWarningFetch(int code);

SIGGRAPH2012} 30

e \Was texel resident?

— Returns true if data is valid, false otherwise

105

SIGGRAPH2012 sg

= | — ~ J‘ ~ | i
L | Residenc

 \Was texel resident?

bool sparseTexelResident(int code);

— Texel miss is generated if any required sample
IS not resident, including:

* Texels required for bilinear or trilinear sampling

* Missing mip maps, anisotropic filter taps, etc.

106

»

o ey SIGGRAPH20124(”
L | LO J/—’\./\f‘i,ljﬁ,f' \ E /’

 Did | hit the low-water mark?

bool sparseTexelMinLodWarning(int code);

— Occurs when generating a texel requires data
from an LOD lower than the low-water mark
specified by the application

— This can be a signal to the application to start
streaming more mip levels

107

SIGGRAPHZO12\3‘

* What LOD caused the warning?

int sparseTexelLodWarningFetch(int code);

— sparseTexelLodWarningFetch returns O if the
warning was not hit

108

* Drop-in replacement for traditional SVT

— Almost... maximum texture size hasn’t grown

* Extremely large texture arrays

— Only populate a sub-set of the slices

— Can eliminate texture binds in some applications

Large volume textures
— Voxels, medical applications

— Use maximum step size as ‘default’ value

Variable size texture arrays

— Create a large array texture

— Populate different mip levels in each slice

GGRAPH2012)&

* Planning further extension(s)

— Application-controlled physical pool
— Map the same page multiple times

— Partially resident buffers
* Streaming geometry

* Lazy allocation for fragment lists

111

J.M.P. van Waveren
id Software

Graham Sellers
Advanced Micro Devices

=
SIGGRAPH20124(_4§

RAGE with PRTs (Image courtesy of id Software)

ISCUSSION

D

aal

GGRAPH2012;Z()

e O S EERRSEAE

* Partially Resident Textures

— Hardware implementation of virtual texturing
e Hardware virtual memory subsystem

* Shader core feedback

— OpenGL extension available

* Developer feedback very important

115

= Paging

= The process of making resources resident in GPU-visible memory
(for simplicity, assume on-board memory)

= Handled by the DirectX Graphics Kernel subsystem and the
kernel-mode device driver

= Regular, non-PRT, resources (textures, buffers) paged in/out with
resource granularity

